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ABSTRACT

—~) This paper considers the time dependent Stefan problem with convection in
the fluid phase governed by the Stokes equation, and with adherence of the
fluid on the lateral boundaries. The existence of a weak solution is obtained

via the introduction of a temperature dependent penalty term in the fluid flow

equation, together with the application of various compactness arguments.
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:) SIGNIFICANCE AND EXPLANATION

Consider a phenomenon (such as melting of ice) where there is a change of

phase, say liquid-solid. In the liquid phase the thermal energy is

transported both by diffusion and convection, and the effects of convection

are reflected in the movement of the free~boundary separating the two phases.
S In Zhis papeflwe Showg%hat such a problem can be formulated

mathematically and that it admits a solution in a weak sense.
B A

S—We hso investigate{‘some local regularity properties of the distribution

of temperature and the field of velocities in the liquid phase.
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THE BIDIMENSIONAL STEFAN PROBLEM WITH CONVECTION: THE TIME-~-DEPENDENT CASE
J. R. cannon'l?, £. DiBenedetto'2) ana G. H. Xnightiy'3)
1. INTRODUCTION

The aim of this paper is to extend to the nonstationary case sowme results obtained by
the authors in (S, 6), about the Stefan problem with convection.

We briefly describe the physics of the phenomenon, referring to section 2 for a
precise mathematical formulation.

Suppose that in a region 0 of l“ + N > 2 a liquid undergoes a change of phase at a
fixed temperature. The model example we have in mind is a water-ice situation. At every
time t the ligquid and solid phases are determined by the knowledge of the distridution of
temperature. We call u(” the temperature in the liquid and uf?) the temperature in
the solid. 1In general, in the liquid region there are present convective motions
originated by body forces f depending on the temperature u(”. The dynamic state of the
liquid is determined by the knowledge of the field of velocities 3 and the pressure p.
The diffusion of heat in the liquid is affected by the velocity :, and in turn v’ point
by point is affected by the buoyancy forces f(u“)).

We will describe the phenomenon of diffusion in the liquid phase by the evolution

equation

IR m

{1.1) 3 M

) - aiv k1(u(1))vxu + :07‘0‘(\:“)) -0

where c‘('), and k1(°) represent heat capacity and conductivity respectively and are

), (),

possibly nonlinear functions of the temperature u The term 3°qu1(u gives a

description of how the velocity : affects the temperature u“).
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The convection will be modeled by the syatem of Stokes equations

(1.2) g—tJ- s + vp = fa''y

where V 1is the kinematic viscosity, p the pressure and f(u“’

)} the buoyancy forces.
The two equations (1.1)-(1.2) represent the classical Boussinnesq coupling of thermal
diffusion and convection [15).
We assume the liquid is incompressible (div 3 = 0)., Moreover since it is viscous
(v > 0) and since we assume that the solid phase is at rest, it is reasonable to assume
; = 0 on the boundary of the liquid region.
In the solid phase there is only a diffusion process described by an equation like
(1.1) without the term involving the velocity, since we assume zero velocity for the solid
phase.

(1)

We assume the distribution of temperatures u ’ “(2)

and the field of velocities
are known at some initial time t = 0, and on the boundary 90 of & we prescribe at
every time t the heat flux g, which is a possibly nonlinear function of the
temperature.

At the unknown boundary I separating the two phases we impose the relation

"V 2 u'? 20 ana

(1) (2)
{u

1) 2)
[k1(u )qu -k,

( » -
)qu lnx LN,

where ; H (“x’ut) is the unit normal to I directed toward the solid phase. Such a
relation measures, roughly speaking, the amount of heat used in the melting process and
L represents the latent heat of fusion.
The problem consists in determining at every time t, the distribution of
temperatures, the field of velocities, the pressure and the configuration of the system.
Our purpose is to show that such a problem for the spatial dimension N = 2 admits at
least a solution, in a sense to be made precise below.
We comment here on the restriction N = 2, and on the difficulties of extending the

results of (5, 6], to the time-dependent situation.

-2-
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Since the Stokes equations have to hold only in the liquid region, one has to have

some topological information on the set occupied by the fluid, in order to give a

meaningful interpretation to the field of velocities. For example one should know that

such a set is open to view the Stokes equations at least in the sense of distributions over

such a set. This information would be implied by the continuity of the temperature which

in turn depends on the smoothness of 3. It turns out that only for N = 2 are we able to
show that the degree of smoothness of ;, suffices to yield the continuity of u.

This delicate interplay between the regularity of u and the regularity of v’, has

also prevented us from using the Navier-Stokes equations

3 > > + +
T€ -VM*—(v'V)v#pr-f

in the place of (1.2).
The limitations are quite clearly of technical nature and it is our hope to remove

them in the future.
Also it should be pointed out that at this stage, unigqueness is an open question.
Sections 2 and 3 contain the classical formulation of the problem, notation and some

preliminary material. The concept of weak solution is introduced in Section 4, whereas

Section 5 is devoted to a listing of the assumptions and a statement of the results. In
Section 6 we prove our theorem by assuming certain facts (Propositions 6.1, 6.2,), which

are demonstrated in Sections 7, 8.

It is a pleasure to acknowledge conversations with Prof. B. Benjamin and W. Pritcharqd,

on the physica of the problem.

2. FORMULATION OF THE PROBLEM

Let 1 be a bounded domain in ‘2 with smooth boundary 2f}. For all ¢t e (0,7],

T>0 let Dt) 22 x {t}, MNe) =3 x {t}) and 8 = U 0(71). We denote with LR
t et

the parabolic boundary of n,r i.e.

r 8 = U Me) .

WM = R0) Vs i
o<t <r
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I'T = V Tt),
o<cer
where I'(t) is a hypersurface in Q(t) determined implicitly by &(x,t) = 0. The

The set n,r is divided into 01 and 92 by the free boundary T =

] -
function éecC (ﬂ,!). ¢<0 on @, >0 in 02 and IVxOI *0 on [I. Here Vx
denotes the gradient operator with respect to the space variables x = (x,,xz) only.

The set TI'(0) divides the initial region (0) into two regions 9'(0) and ﬂz(O).

We set 31 = '51 n s'l‘ and denote with ﬁ(“ the outward normals to S;.
(i)

Consider the problem of determining the real valued functions &, u ¢ 91 +R a

vector valued v s ﬂ'l.' »> nz, and p : 91 + R, satisfying

3 (1) ($3) (1) (1)

(2.1) o) - vk T)eat) ¢ :‘qui(u )=0 in @, L=1,2
(2.2) -ki(u(i))vxuu)'ﬁ(u - gi(x,t,u(“), (x,t) e Si. i=1,2
(2.3) w0 = ulP,  xeg© , nhiPm <o
(1) .
Y [reoy = °
(.o (1) (2),0 .(2)) o an
(2.4) xyta' Ty ot -k v a®g e e, e,
3 » * 1)
(2.5) xVv-we+vp=fu') i g
(2.6) v=0 on 8,
(2.7) v(x,0) = 30(x), x € 8,(0), daiv 30 =0
: =
olx) 20, x e 200
(2.8) ‘ div v =0
(2.9) ;(x,t) =0 a.e. in Qz .

-d~
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Here the latent heat L is & known positive constant, gl(x.t. E), 1= 1,2 are known

functions of their arguments and i( *) is a given vector valued function mapping R into

lz. Also 01('), k‘(') are gmooth functions defined for (-1)‘. € 0 and such that there

exists constants 'o' 'r' for which

(2.10) 0 < vy < alte), xi(i) <Y, i=1,2

vaenr, (-1)10 <0,

AT - e rTags 4 3

In order to formulate the problem in a simple fashion we make a change of the unknowns

as follows., First note that by their physical nature the heat capacities 01(0) are

continuous, monotone increasing and coercive functions of their arguaents which can be
(1))

deteraines

defined so that 01(0) =0, 1= 1,2, Therefore the knowledge of “1(“

u(“ uniguely. Then we define

01(u“)) in 8

um=

u 1

[ [ xa ey erak , w0
0

K(u) =

u -1 -1
[ xytaz'(€)a]) tEraE , w <o

0

e et g Ao gt e e T Y

o} tu) tx) in 8,(0)
u,.(x) =
(1] -1

(2)
o, (uo (x)) in 82(0)

(l,t'¢;1(u)) (x,t) @ 31

9
glx,t,u) = .
gz(x,t,a;'.(u)) (x,t) @ 8,



(1),

The equations for u { = 1,2 can be formally rewritten as

Pa >
Kn-AK(u)+viu-o in QT

-Vxx(u)'ﬁ - g(x,t,u), (x,t) @ ST

u({x,0) = uo(x), x @ 8(0)

TSR A AR S~ I 1~ Tt

u({x,t) = 0 (x,t)erl

+ -
| {[Vxx(u)l - 19, K(u)) }oVeert, (xe)@T

where [Vxx(u)]* denotes the limit from 91, as (x,t) approaches [, while [Vxx(u)]-
denotes the limit from 02.

As for the velocities, setting fu) = i( u;‘(u)). we can rewrite (2.5) as
9 + »>
atv--\!Av«'-pr-t(u) in 01.

In order to formulate our notion of weak solution of (2.11), (2.5)', (2.6)=(2.9), we

need to introduce some basic notation.

3. NOTATION AND FUNCTION SPACES

In this section we give a brief description of the function spaces employed and recall
bagic facts, known from the literature, to be used as we proceed.

For q,r > 1 let Lq,tm'r) denote the Banach space of those measurable functions
mapping ﬂ,r + R with norm defined by




q =
. il oo ‘]x Jutx,7)|%ax .

when gq=r = 2, Lz 2((I,l,) coincides with the Hilbert space x.z(n,r) whose inner prod >t
[

generates the norm ."2,01, - "'2.2,0," If Qq=r we set

(‘,')Z'OT

tut = ful
qu.n.r

A =T

q'n'!

Let w;'o(n,r) denote, for p > 1, the Banach space with norms

+ 09 ul?

P
= fJul b8

P QT

L4

P
lul10
T

“ ’
1 P

2,)

P .
le\llp' |qu| dx

n'!
T 8,

. and |*| here denotes the suclidean length of a vector in R2,

If p=2, w;'°(c,r) is the Hilbert space with inner product

(3.3 (W g0 = (u¥yg + I G )0, -
w, (e M S T i i “r

With w‘z" m'l‘) we denote the Hilbert space with inner product

L ATl SRy P

du ow
(3.4) o ey T 0, (3% Waa
2 T 2 T
& Here :—:—, g—: denote generalized derivatives. These definitions are modified in the usual
i
way if q,r,p are infinity, Por p > 2 1let ﬁ;'o(ﬂ,r), be the subspace of w;'o(ﬂ,‘.) of

those functions whose trace on d1(t) vanishes for a.e. t 6 [0,T]. Also let V2 l,(ﬂ.x,)
L4

denote the Banach space with norm

(3.5) ful = ess sup lul + WV ul .
vz'p(ﬂ,r) 0<L<T 2,8(¢) x PR,

.......



with v (2_) we denote the subspace of those functions in V_ () whose trace on

2,p T 2,p T . &
(]
M(t) is zero for a.e., t 6 [0,T}. If p = 2 we denote Vz'z(ﬂ,r) and vz'zm,r)

T

respectively by Vz(ﬂ,r), \’2(9,1,).

et v ) (9'%(2,)) denote the subspace of w '’ R;'%(8,)) of those
functions for which the maps t + '“'2,0(:) are continuous, and with norm defined by (3.5)
with p = 2 and the "ess" deleted. We will use vector valued versions of these spaces by
making the following convention. If x(ﬂT) is any one of the spaces defined and

; : Q,r + nz, by ; e x(ﬂT) we mean that each component of \’r belongs to x(ﬂ,r).

loc

Also if u @ X(Q) for every cylindrical domain Q C n,r we write u @ X (Q,r).

The proof of the following embedding lemma can be found in [11].

Lemma 3.1: Let Q = Q‘x(t,,tz), where R'C Q and 0 < t o<ty €T, be acylindrical

:
i domain in l“”. There exists a constant C depending only upon the dimension N,p,

and meas Q@ = |Q| such that if u e ;2 P(Q). then -
’

i
! Iulr's'g < c(p,u,lql)luwz'
b

(€}
p Q
where r,s » 1 are connected by the relation

. 2 - N
(Np + 2p - 2N)r (Np + 2p - 2N) 1

1
8

and

ot A s e A

2N

Np 2N __
t9[2,“_p]I 8 € [p,”], for N>p2a=s

ra [2,»); 36(9-24-%2,.], for 1< N<€<p,

We will use the following particular case of Lemma 3,1,

Corollary 3.1. Let u € \72 P(Q) and let N = 2, Then there exists a constant
’

c = ¢(p,|Q|) such that

Tul < Clule
2p,¢ v

2,p'®

N + 2
N )

: and s falls in the admissible range,

Proof: We take r = s = p( in Lemma 3.1 and verify that the common value of

e S T WA WY VA S~ 25 < T = TR

b -8-




N R o e s v 4,

Corollary 3.2: Let QC ﬂr and u € v2 p(Q). p > '« Then for every cylindrical domain
’

Q' such that 6' cQ

tul < Cclul
2p, Q' v2,p(Q,

where C depends upon p and dist{Q,Q').
- Proof: Q has the form Q = G x (t‘.tz). where G is a region in 8§ and

0< t1 < t,€T. Let X be a compact contained in G and set Q' < K x (t1,c2).

2
Construct a smooth cutoff function ¢ @ CO(G) guch that ¢y 3 1 on K. Then

o
uy € Vz'p(Q) and

luwl2 ,

000 < C(p.lQl)luvl‘;

2,p

(o)
The corollary follows from the particular construction of ¥,

Next we describe the function spaces where ; will be found.

Denote with J(R) the closure in the norm of le(Q)l2 of Do(ﬂ), the space of
infinitely differentiable, divergence free vector fields ;, compactly supported in .

Let also J,(ﬂ) denote the closure of vu(n) in the norm

';'.11(9) - v die, o

SN

2 2

Set J(Q,r) = L°(0,T33(R)); J‘(RT) =L (O,TlJ‘(ﬂ)), J1'°(9,r) = C(0,T;J(R)) N JF(QT)'
1,1 2 g -

J",(QT) - [Hz' m,r)l N JI(QT" J1(QT) =L (0,T,3()) N J‘lm'l‘)' Note that

- ° 2 °1,0 2
I, (ﬂ,r) o lvzm,r)l + and J1'°(0T) C (Vz (RT)] .

4. THE WEAK FORMULATION

Let ¢ @ H;"(QT) such that ¢(x,T) = O, Then multiplying the first of (2.11)

by ¢ and performing (formal) integration by parts, we obtain

>
‘sz {-Blu)e, + T K(u)*V ¢ + vV uvldxae =
T

(4.1)

= ~f g(x,t,uledo + [ BCuyle(x,0)dx ,

S'r 1(0)




i
i
1

where B(°) is the maximal wonotone graph

s ’ s >0
(4.2) B(s) = [-L, o}, s =0
s -L , 8 0

The formal calculations leading to (4.1) are routine and we refer to [7, 12], for
details. Here we only remark that the jump of B8(°*) at zero takes into account the
interface relation in (2.11),

Since the graph B(°¢) is multivalued, B8(u(x,t)) has to be interpreted «s a function
w(x,t) C B(u(x,t)), the inclusion being intended in the sense of the graphs. In order to
simplify the symbolism we will keep the symbol B8(u(x,t)), bearing in mind the way it has
to be interpreted.

Since v, # 0 excepton T, B(uo(x)) is unambigously a.e. defined in (0).

To obtain a weak formulation of (2.5)', (2.6)-(2.9), consider a smooth, divergence
free vector valued function ; which is compactly supported in 91(t) for all t e (0,T)
and ;(x,‘r) £ 0. Take the "dot" product of (2.5)' by ; and integrate by parts in 0‘.

Routine calculations (9, 10), give

(4.3) [J (=¥, + v 39 § - Eu)ePlaxae = | 3°(x)$(x,o)ax .
Q x x Q. (o)
1 1
Note that 81 is the set where u > 0.
Definition: By a weak solution of (2.11), (2.5)', (2.6)-(2.9), we mean a pair (u,;) such
that

(1) uev(Q.)n Cm'r)

[ %

T

(ii) V@ J,(8); Vv =0 a.e. on the set [u < 0] = {(x,t) & n,rln(x,t) < 0} .

-
v+l

(iii) u and v satisfy

(4.4)  [f (-Blu)g, + 7 K(u)eT ¢ + (Vo7 ulgldxdt = =f g(x,t,uledo + [  Bu,)e(x,0)dx
I} X x x s 0

r - (o)

for all ¢ @ w;"(n,r) such that ¢(x,T) £ 0, and

=10~

RS A A g § 7T+

L

s

T e




PP —

Remarks: (i) Since we require u to be continuous, the set (u > 0] is open in the

(4.5) [ =wd, + w0 90 § - Eupblaxae = | v (x0¥(x,0)ax
(wo) 2 (0)

for all ¥ €3, (@) such that ¥ % =0, ¥(x,M ~0 and supp $(+,0) C [u > 0)(t).
’
relative topology of ﬂ,r, and therefore the last integral identity is well defined.
(ii) The integrals in the identity of the temperature are well defined, modulo some

basic assumptions listed below.

e

S. ASSUMPTIONS AND STATEMENT OF RESULTS
With respect to the data g(x,t,u), uo(x), :o(x). E(u) we assume the following
a,) uu(x) 2 0 a.e. in R(0), uolx) >0, x eni(O), uo(x) <0 on nz(o).

Moreover u, is essentially bounded and

1ople,a(0) ¢ %o
where K, is a known positive constant.

[Azl The function gix,t,§) is continuous over s,r % R, and satisfies the growth

condition yi

lg(x,t,6)] < K, + K,IEl '

where X; is a known positive constant. Moreover § * gi(x,t,8) is monotone at the origin
for all (x,t) € Spr Lewe g({x,t,6)eign§ : 0.

[Ay;] With respect to KX(°) we assume that & + K(£) is Lipschitz continuous in b

m\{0}, it is monotone increasing, and satisfies

0« AO < K'(E) ¢ X,, a.e. £ € R\{0},

-1 -1
where Xo = 1011 and A,‘ = YiYo .
(Ag) 30(::) e J(8) and Cotx) =0 a.e. in D0

(Asl ; is Lipschitz continuous in R and

» »
- < -
lf(l1) f(lz)l Kzll‘ 02|

-11-




+»
for some constant Kz and all 8, €R, i=1,2. We will also assume f£(0) = 0. This is

>
no loss of generality since f£(0) = 0 can be always be realized by addition of a

conservative force incorporated in the pressure term.
Let a = (a,,a) € My {oh) x mu {0}), be a multi-index of length [al =a + &,
Formally with D:!' we denote the derivatives of F of the form

alal
C‘ Czr
3x1 3:1

.

Also for o,n € (0,1) let H‘{;:(QT) denote the space of those functions which
are HSlder continucus on compact subsets of QT with HSlder exponents ¢ with respect to
the space variables and n with respect to time.

We can now state our main result [

Theorem: Under assumptions [A1l-[A51 problem (2.11), (2.5)¢, (2.6)~(2.9) has a weak R ‘

solution. Moreover ‘
(1) ue L8 l‘
(1i) If £+ K(E) € C (R7) then u @ C ([u< 0l) ‘

(1i1) If E+ K(E) e C (') and 1f £ » F(€) @ C (R} then for every multiindex & .

ou @ 10°%(@, N [u > 0)
(a) -

olu 6 u‘l’;:/z(a,rn fu>0]), o =a(a) & (0,1) «

X+ vix,t) @C (N [u(s,t) > 0)), a.e. t@& [0,7),
(b)

>
D:v e Lﬁoc(ﬂ,r N {u > 0)), for every a .

Remarks: (i) Assumptions [AI)-IAZ) are gomevhat stronger than what is needed for the

proof of the theorem and have been formulated in order to simplify the arguments. 1In fact

the monotonicity of £ + g(x,t,£) at zero can be relaxed, and on uo(x) one only needs to

agsunme uo(x) -] 1.2(9(0)). We will indicate later how this can be done,




\THRL 2 A

TS e S DN 2% ORI B - < iy s - AR

{41) If in (2.11) the variational boundary data are replaced by

ul., = hix,t), (x,t) € 5,

Sp

then we have a Dirichlet problem whose weak formulation can be derived in an analogous
way. However, it is necessary to take test functions ¢ € v.l;"(ﬂr). The proof of the
theorem carries over to this situation, modulo the obvious changes due to the different

nature of the boundary data. We omit the details for the Dirichlet probles.

6. PROOP OF THE THEOREM

The plan is to obtain the solution u,v as a limit of nets {u.l, (;e’ solutions of
certain approximating problems solved in all R,r. Since ; sust act ultimately only on
the set (u > 0], we introduce in the approximating process a penalization acting, roughly
speaking, on [u € 0].

Let € > 0 be fixed and consider the problem of finding a pair (“c':c)'

u @ Vz(ﬂ,r), ve J‘:(O,r) satisfying

>
1) {-Blu)e, + ¥ K(u )V ¢+ VeV u vlaxde -
(6.1) T

= - [ glx,t,u )90 + [ Blug)e(x,0)ax
s, a

for all v @ w;"(n,r) such that v(x,T) £ 0, and

(6.2) ‘!'! (-8, + vvx$t:vx$ + e w2V b - Fou, ¥l axer = {z votmbix,0ax
T

for all ; e .11 1(Sl,l,). ;(x.'r) £ 0. Here e"uc(-) is a penalty term defined by
s

13-




1 ’ - & g€ -2
H (s) = -~ s-1, -2 < 8 € =€

0 R € <Cg<ce,

and v (x) here is the extension of Vo(x) via § into @,(0).
The crux of the matter lies in the proof of the following facts.
Proposition 6.1: For all € > 0 the system (6.1)-(6.2) admits a solution (“c';e)'

Moreover there exist constants C .C,,c

o depending upon the data in assumptions [A,]-(Ag)

2
but independent of € such that

+
vl < C

(a) lul R
€V, (@) ¢ 3y, 0

1 > 2
(> g y B (u )]y, | “axdr < c,
T

(ec) l“c'-,aT < c2 .

For every compact K C QT, there exist constants C3, Cs depending upon K and €,
such that

(q) I%-‘-__- “cl 2,K < CS(K'c)

(e) l;el.'K < c K .
Proposition 6.2: The net { “e) is equicontinuous over DT: that is for every compact
KcC QT, there exists a nondecreasing, continuous function Wg(+) : l* * l*,

uK(o) = 0, dependent on cu-e(x,an,r) but not upon €, such that
< V2
lug (x,,t0) = ue (x €, ) ux(lx.' = x,l 4 e, - £ 1'%

for every pair (xi'ti) ek 1i=1,2
+ 1,0
By Proposition 6.1, the nets {“c}' (ve} are weakly compact in W, (n,r), and

J1(0T) respectively. Hence for a subnet relabeled with ¢

e, ok
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u_ +u weakly in w;"’(q'), and

[
» 4

Ve * Vv weakly in J‘(QT) .

By proposition 6.1(c) and Proposition 6.2, the net {“t) is equibounded and equicontinuous
on every compact K C QT. Therefore a subnet can be selected and relabed with € such

that

u * u uniformly on compacts Kc n,r

and consequently
u *u strongly in Lz(ﬂr)

Because of the equicontinuity of (“c} the uniform limit u is continuous in QT, and
therefore the set (u > 0] is open in the relative topology of ﬂr.
The proof of these propositions ia lengthy and technically involved. We postpone it

to the next sections and show here how to conclude the proof of the theorem, using these

facts.

{6.A). The identity of the temperaturs.
since {y.} 1is equibounded in @,, from the definition (4.2) of the graph B, it

follows that the net (ﬂ(ug)} is also equibounded in Q,r. Therefore the selection of
subnets can be made in such a way as to insure

l(uc) + w weakly in x.z(ﬂ,r) .
By monotonicity of B(*) we have w c B(u) in the sense of the graphs. As before we will

write B(u) instead of w.

By the trace theorem [14), for every N > 0 there exists a constant C(nh) such that

2 2 2
!s log - ul®as < MV (o, - Wty g ¢ MG, - W g
» T

Since the norms "x(“t -~ u)l 2'07 are equibounded and u. * u strongly in Lz(ﬂ,r), the

above implies
u *u strongly in Lz(s,r)

18-
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and consequently in view of the continuity of g(x,t,u)
q(x,t,ut) + g(x,t,u) strongly in Lz(s.r) .

By assumption [A,] , the definition of K(°) and the equicontinuity of (“c} over compact
subsets of 0'1' it follows that (x(u‘)} is equicontinuous on compacts K C Qr and hence
the selection of subnets can be made to include

x(ut) + K(u) uniformly on compacts K C ﬂ,r .
Consequently

x‘“e) + K(u) strongly in Lz(qr) .
Now we also have
th(ue) + z weakly in Lz(ﬂ,r) .

Let v €C(q,). Then

/] V X(u )vaxat = -[[ xtu v, vdxde

% %

and letting € + 0

I 20 = = [[ R(u)V paxat .

a,

This implies =z = Vxx(u). For the nonlinear term involving v € in (6.1) we have,

[[ %7 uooaxar = -[f ;t'vxgucdxdt +=[f 9 puaxar = [[ VeV, uodxdt ,

% L %
for all pew''(a).
2 Uy
Finally, letting € + 0 in (6.1) we obtain the identity (4.4) for all ¥ e w;"(qr)

such that ¢(x,T) = 0.

(6.8] The identity of the velocity

Let K be a compact contained in the open set [u > 0). Since u. *u uniformly
on K, there exists € > 0 so small that ue(x,t) >0, W¥(x,t) € K and all ¢« -
Let ;e J‘”(QT), t(x,'r) £E0 and supp ;(',t) C K, then for the term involving the
penalization in (6.2) we have

'y Hc(“e);e; dxat =0 VvV E< g .
K

=16~
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letting € * 0 in (6.2) with the indicated choice of ;, and making use of

proposition 6.1, we obtain (4.5). As K C [u > 0] was arbitrary, we obtain (4.5) for all
such ; with supp ;(nt) C [u> 0)(t).
It remains to show that veo a.e, on [u < O],

By Proposition 6.1

1 + .2
?y H (u)|v |“axat <,

Let K be a compact contained in [u < 0). From the uniform convergence of u, to
a, it follows that there exists € so small that “e(“e) £1 on K for all €« €xe

Therefore

[f 19| axar < ec, .
K

Letting € * 0, by lower semicontinuity of the norm we obtain ; =0 a.e. in K, and
since K C [u < 0] is arbitrary, ; =0 a.,e. on {u < 0],
[6.C] Regularity

Statement (1) will be proved in Proposition 6.1,

(ii). On the set (u ¢ 0], ; = 0 a.e. Therefore the temperature satisfies

g—; u - AK(u) = 0,

in the sense of distributions over ([u < 0). Note that here we have used the definition
(4.2) of the graph B(*). PFor every cylindrical domain QC ﬂT N [u ¢ 0] we have
uwe v;'°(q), Therefore if K(*) is infinitely differentiable on (-®,0), the statement
is a consequence of classical results {11].

(1i1). On the set ([u > 0), wu, v satisfy

u - AK(u) + 3-vxu -0

;10

%t-uzovxp-i(u)

in the sense of distributions over [u > 0], for a seasurable function p. Moreover for
every cylindrical domain Q C(u > 0] we have u @ v;’o(Q). and by Proposition (6.1),

u@L,(Q) and ; ] [LS(Q)JZ. Hence the stated regularity follows from the results on the

-17=
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local smoothness of weak solutions for the bidimensional Boussinnesq system established in
[1].
7. PROOF OF PROPOSITION 6.1
Denote with B.(') a sequence of smooth functions in R such that 8-(l) + B(s)
over compact subsets of R\{0} and satisfying
(1) 3. are monotone increasing
(i1) B;(s) >1, vsenr

1

(111) Bn(s)-a for s > —, and Sn(s)-s-L for l<-;.

B|l=

Such a sequence can obviously be constructed.

M T R P R NP ST PRI Py SRS ST

Let also {;0 .) be a sequence in J (R) such that
’

» L 4
vo'- * N in J(82) .

We fix € > 0 and for each m 6 N congider the following N

A 1,0 >
Auxiliary Problem: Find u &V, m,r), V. € J"1(n,r) satisfying

>
(7.1) /I (-B_(u.)wt + Vxx(u')ovxw + vm-vxunvp}dxd'r =

-- £ glx,t,u )90 + [ B (u)v(x,0)dx

T a =

Vo @ ";'1‘“1-’ such that w(x,T) = 0

? » b . l > - - 4

(7.2) ‘I‘I (- v, ﬁt WV Vj + o H v ¥ j
: |

. . i

- t(um);)dxd‘l' -{‘ vo’n-hx,omx

vy €3, (8, such that dbx,m =0 .
[

L e R A S0 Tk

We make the convention of denoting with C a generic positive constant depending upon i

quantities that will be specified as the constant appears.

-18-




Proposition 7.1: For each m € M the auxiliary problem (7.1)-(7.2) has a solution,

Moreover there exist constants C depending upon the data in assumptions [A\l-lhsl, hut

independent of m and €, such that

»
v 1 <C

(7n3) l\l ] 3
] Vz(QT) » J:(nm)

1 + 2
(7.4) E £I Hs(\l.)l"" dxdt € C .
T

Proof of Proposition 7.1: We employ a Galerkin procedure. 1In pz(ﬂ). introduce the

orthonormal basis {z‘(x)} genérated by the problems

-Az1 - Aizi in Q
3z
»
n

In J(R) we introduce the orthonormal basis generated by the Stokes problems

>
—Aci +Vp = "1‘1 in @

>
i -0

»
Silog = ©

where P is a scalar function representing a pressure. From {10,13] it follows that

*

(‘1} form a complete orthonormal set in J(f). By Hilbert-Schmidt theorem [13] we see
that any smooth divergence free vector valued function 3, compactly supported in § has

an absolutely and uniform convergent representation

a(x’ - 2 ("?'E

)
i=1 L

f (x)
Lz(ﬂ) i

Moreover the derivatives of K(x) have an absolutely and uniformly convergent

representation obtained by term by term differentiation.

-19-




We represent the initial data u_(x), V. _(x) as
[} 0,n
T 0
uo(x) = 121 °1’i(x)

-
+ (4,4
o,a¥) = 121 ag (x) .

For L @8 M fixed set
> L L] >
(7.5) vi(x,t) = I e (03 (x)

i=1

and denote by L l(x,t) the unique solution of
’

3 -1 2000 8~
{(7.6) It ".,z - Ax(B- ‘".,z” + vi \7)‘0'I (w_,‘) =0
(7.7 k@ W )N = glx,t,8 (W )) on §

* x 'm  mR IIx T Fa e P
(7.8) H-"(x,O) - V‘(x) ’

in the sense of projections over the span of {zt"z"""l}' where
L
ve(x) = § Cp, 124 %)
im1
and
B (u(x)= ] c .2(x).
m 0 131 | PR ¢

Namely denoting with P, the Lz(ﬂ) projection onto the linear span of {z‘,zz,...,z‘},

W is the unique element in H"‘(ﬂ ) satistying (7.8) and
m, L 2 T
J 1w oo+ V(B M )V R0+
S it m,t ¢ x m mt x 2
(7.9)

2 e -1 - -1
+ Vg 8- (w-'l)p‘w}dxd: - g 9(x,t,B_ (M )P va0
T

«20-




for all ¢ e w;(n), and all t e [0,T).
For the construction of H- L (global in time), we refer to (2,3,4]).
,
We will employ the function W,y 80 obtained to construct the function \7! solution
’

a 2 4 =1 =1 > =1
T Ve - W, DY, = 8T, ) e gy

(7.11) 3‘(::,':) =0 (xt)es,

)
> - ' 0+
vz(x,o) 1-21 dici(x) .

in the sense of projections over the span of {Esz....,Ez). Namely denoting with l!l

the J(8) projection onto the linear span of (E',Ez,...,z‘}, :l is the unigue element
in I, 1(9 ) satisfying (7.12) and
. T

3 + >
‘{ {ﬁ vy lll$ + vvxvz ] Vxllz;+

-1 -1 ., - -1
A RUATURIT A 7 é;( ', ond

for all Ve J,(2) and for all te [0,7).
We omit the proof of the existence and uniqueness of ;1 satisfying (7.10) since the
construction follows by straightforward modification of standard techniques (10,9).
Denote by x._[o,'rl the space of essentially bounded real valued functions in
{0,7), and with ' [0,T] the space of those square summable real valued functions
t + a(t), whose weak derivative d4'(t) is square summable over [0,T).
For L €M set
x‘ = (L[0,T] )‘. the cartesian product of L _[(0,T)
by itself £ times
¥, = (8'10,71)", the cartesian product of r'(0,

by itself £ times.

2=




In xl and YL introduce the norms

L
2 2
12, (*),8.(*),000,d,(+)1° = ess sup | (4 (v)]
! 2 177Xy Tocesr w1 T

2 L 2 L
.d1 (‘)'GZ(.)""'dl(."Y = z 'dilzrtol’r] * 1£

2
1a‘t .
PR i2,(0,T]

1

The procedure described above defines a map Fl H xl > Yl as follows. Given an

. Ve construct w l(x.t) the unique solution of
’

(7.9) with ;i given by (7.5). Then we associate with (d:(t)pd;(t),...,d;(t)), the

Fourier coefficients fd1(t),d2(t),...,dl(t)} of the solution :z(x,t) of (7.13).

L ] * L ]
L-tuple [d’(t),dz(t),...,dl(t)} ex

We need to show that for each & € N, Fl possegges a fixed point in xl’

This can be done by using the Leray-Schauder fixed point theorem [10). For this we
have to prove that

(1) F, maps a bounded set B in X, into itself

L 3

(11) Fl : B* B is compact

(1ii) The set of solutions of XPl(x) =x, A6 {0,1] is bounded independently of

x.
Lemma 7.1: There exists a constant C which depends only upon ug(x), QT, L, the
constants in assumptions [A1)-[A5] and which is independent of €, m, %, ;z such that

'Hm,l("t)'z,ﬂ <€c, all te€[0,T] .

-1
Moreover setting Bm ("m,l) =U

Y there exists a constant C dependent on the previous
r

quantities and independent of €, m, %, ;E such that
2 t 2
(7.14) oy g(e,e g+ £ lvxum'l(‘,f)lzlndf <c; te (0,7 .

Proof of Lemma 7.1: The proof is exactly the same as the proof of Lemmas 1 and 2 of [4]).

Here we only show why the constants C are independent of ;i. The lemma is proved by

setting in (7.9)
Byt =Wy

-22-
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and performing estimates in the identity so obtained. For the term involving ':', we have
[ vw ax= [ V(Y ,f"“"' £'(paglax
nln m,4" xm,L nlxo m

wIl | JR) | +
= [ [J ™" 8 (Eraglaiv veax = 0 .
Q0 n )

Lemma 7.2: (a) There exists a constant C which depends upon the constants in Lemma 7.1,

the Lipschitz constant of £(°), 2 JO(x) and which is independent of ¢, m, &, v*,

such that
t
+ 2 * 2
(7.15) v, (e,000) o ¢ { 17, (+, 0 qat <cy te (0,1
1 : > 2
(7.16) <] (U, )1V, 1 axat < c
Y]
T
(b} There exists a constant C which depends on m, €, l;o .I‘,I (2’ but which is
’
1
indspendent of L such that .
3 +»
(7.17) 'a-t vl.l2,ﬂ_r < C(m,€) .

Proof of Lemma 7.2: To prove (7.15) and {7.16) choose nJ- v"_ in (7.13). To prove

(7.17) choose IIJ - %'t 3". The lemma now follows from routine calculations and Gronwall's

inequality.
Now (7.15) implies

t
: taim)’ <c, for all t e [0,T] ,
i=1

1
and therefore if {d3(t),d3(t),...,d}(t)} belongs to the ball of radius €2 in x, we

L
have

1/
» . 2
F‘{d1,d§,...,dl} € the ball of radius C in x,. .

= \d \d »
In fact by (7.17) (dl'dz'""dl) Fl{dde'""dl} €Y, and Y, is compactly embedded

in Xy. Therefore F" is compact. The continuity of F L is demonstrated by a standard

difference argument, and condition (iii) is trivial (see (S) for similar arguments).
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Hence we conclude that F L admits a fixed point in X ¢ and actually every fixed

point lies in Y,. Let ;l be a fixed point of Fl and set

-1
U b 8. ("-") .

n,L

Then satisfy the identities

E
ot Uaer

{7.18)

k] *>
xfz{ {a—t- WPl * T KU IV R vlovxu-'ll’.w}dxdt - -{3 glx,t,U, )P ¢do
T T

for all ¢ @ H;"(QT) such that ¢(x,T) = 0,
3 + >
{ZI {n v'-.nl; + viv‘ ! Vxll'; +

T
(7.19)

-1 + *
ve Be(U.'l)vzn.;}dxdt - éf t(u-'l)-ﬂ.;dxdt
T

for all ;G J, 1(I!,I,) such that z(x.'r) 2 0. Here 8 1is a positive integer < &, Now we
’
let £ + > while m S8 ¥ remains fixed.
The limit proceas of £ + ® in (7.18) is carried out exactly as in (4). Ve remark

that a crucial fact in this connection is to ghow that

U-'f uw strongly in LZ(QT)

(7.20)

W + v -] 8-(“1:1)' weakly in Lz(ﬁ,l,)

m,L

These facts were shown in [4) to which we refer for details.

The pasgage to the limit in (7.,19) follows the arguments of [(9,10], by making use of
the information (7.20).

Note that by lower semicontinuity of the norm the estimates (7.14), (7.15), (7.16),
{7.17) are still valid in the limit. Proposition 7.1 is proved.
7-(a) Regularity of u, and ;-

Next we give an equivalent formulation of (7.1), by using the Steklov averayings of a

function P @ vzm,r), defined by

~24-
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t+h
-:;I P(x,T)at, 0¢t<T-h
t

Ph(x.t) -
0 t>T-h

In [11]) it is shown that (7.1) is equivalent to

3 .
(7.21) y {3 B tu )P + Y (K(u )1, V9 + LV oY u ] v]dxdr = £ lg(x,t,u )}, vdo

t t

for all 0 ¢ t€<T~-h,

and
B-(u-(x,O)) - B-(uo(x)) .

1,0
for all vy e v, (OT).

Lemma 7,31 There exists a constant C independent of €, such that

ess sup |u.| €C  m=1,2,400 &
nT

Proof: Let k be a positive real number such that k ? -ax{%uls.(uo)l. gl and consider
[4

the function
+
¢ = (lB-(u-)lh -k) = nax{[B‘(u-)lh - k;0} .

It is immediate to verify that ¢ @ w;"(ﬂw) and therefore it can be used as a test

function in (7.21). We obtain

t
13 +12 R +
{) ‘{ {53;{“3.(“_)1“ )T} . VIR )1 oV (18 (u )], - k)T s
{(7.21)
> + +
+ (v e u 1, (I8 tu))), - k) }axat = -i la(x,T,u,)1, (B (u ) - x)'do
t

We perform an integration by parts in the first integral and let h + 0, exploiting

the fact that u, (and hence B.(u.)) belongs to v;'o(ﬁT) (11]. This gives

25~
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i
1
1
|
i
}

1 *? . oyt
3£(:)(6‘(u" - k) ax + j{ v Kla »e¥ (B (u ) - k) dxar +
(1.22) + [ Tr_-vxum(am(um) - 0%axat = <[ glx,e,u )(B_(u) - k)*a0
b s
t t

L +2
+3£ (B (ug(x)) - k) “ax .

By our choice of k, the last integral in (7.22) is zero. We treat the remaining terms as

follows. First observe that by our construction of Bn(') we have

BE(S) =g for 8>

-

Therefore since k > i» we have (Bn(un) - k)+ - (um - k)*. From this and routiie

calculation it follows

+ ' 2
‘f‘] V. Xlu )V (B (u ) - k) dxdT = y K'(u )|V (u - Xx)7|%axar > 0.
t t

For the term involving the velocity we have
> + > + +
- = -V - - =
I/ V-'qum(sn(u_) k) dxdt £f V' T (0 = K) (u, = k)~ dxdt
t t -

LTI a2 .
= —-é[ Vo Vx[(u. k) 1“dxdT = 0
t

~N

since div Sm - 0.
By monotonicity of g(x,t,un) at the origin
+
g(x,t,“m)(um -k) >0,

Carrying these estimates in (7,22) and dropping the non-necative terms we obtain

/| tu - x)*2ax < 0 a.e. t @ [0,T).
Q(c)

This implies un(x,t) €k, a,e, (x,t) @ nT. The bound from below is derived

analogously. By taking




k = max{1, :: lB.(uo)l.} .

the constant in Lessma 7.3 is made independent of m.
This result will be employed to prove the following lemma
Isopa 7.4: let K Dbe a compact of QT. Then there exists a constant C depending upon

dht(K,mT) and € but not upon m, such that

|3n|.'K <ctek), me= 1,2 .

Remark: Lemma 7.4 says that the sequence {;_) is uniformly bounded on compacts of n,,.

We stress the fact that the bound does not depend on m, but depends upon the saize of the

penalty tera t-,H‘(u-) (and hence upon €). Algo there is no claim of uniform
boundedness of ;n over all n,r, but only on compacts K C QT-
For each m € M we define the vorticity N- of ;- as the gkew-aymmetric tensor
(“:j ) of entries

uij - av“‘) - SV(” 1,9=1,2
n 5‘, 5x1 ’ ’ ’ .
Let G, G', G* be regions in R asuch that G* CG', G' CG, G CQ, and consider the
cylindrical domains
= " = L] L] L4 o "
QEgGx lt,ptzll Q' 26 x lt1.t2]1 Q" = Gg" x [t1,t2]
L] -
where 0<t1<t1<t1<t2<1'.
The following local representation of ;n' will play a role in what follows.

lenma 7.5: let x + L(x) e C;(G) such that &{x) = 1 on G'. Then

(7.23) SRV (x,t) = [ ¥ =y Ao rieiey + A e,

where H(*) is the fundamental solution of the laplace equation and for x € G“, in(-,°)

is harmonic in x and z&°°(o,-r), uniformly in m. 4




e e

p
i
1
v
i]

Proof of Lemma 7.5: Assume first that ;‘ -] c.(ﬂ,r). Then from -AH(x - y) = 6x in

D'(lz), where 6: denotes the Dirac mass concentrated at x, we obtain

) . (1)
Clxdv " (x,t) = {2 qu(x -y Vylt(y)v- (y.t))ldy =
f ey i hix - ) 2= vy eay ¢ [ THIx - p)eVEi v iy, 010y
jeta oYy Iy s .
= é C(y)VyH(x -y) ’\ﬂ-(y,t)dy + A:“(x,t) v
where
(w () 2 >
A (xt) -{; (VH(x - y)VZy)Iv " (y,t) - ‘!;3-;1- H(x - y)9C(y)ev_(y,t)dy .

L J
By a density argument this representation holds for v- e J:(Q,r). Because of the choice of
the cutoff function §, Kn is harmonic in G" and 1&”(0,1) uniformly in m.

Remark: Such a representation is similar to Lemma 2 of [18]. The point here is to point

out that since ;n is harmonic in x € G* and I.:oc(o"l') uniformly in m, we have

a * loc 2
Dx An e (L, (QT)] , uniformly in m .

The bounds will depend on dist(G‘',G"), the constant in (7.3), and the multi-index a.

Proof of Lemma 7.4: Since ;m satisfies (7.2), denoting with ;n n mollification of
14
;., there exists a differentiable function Pm,h such that

3 *» > +* -1 +

(7.24) FYY vn,h - vAv‘ B -pr"h + [f(u-) - Hc(“m)v-]h

in Q‘l‘ (see (18]).

By taking the curl

3

» -1 .
(7.25) ﬁmn,h - \OM-’h - curl[f(u-) -€ H_(u)v] in QT .

€ m" mh
We already know that u e l,_(ﬂ,r) uniformly in m, and that :- e J:(QT) uniformly

in m. Consequently setting

¢ = * -1 +
n f(u.) -€ nt(u-)v. )




we have

OE'hCLzlﬂr) uniformly in m and h,

and there exists a constant C(¢) depending upon ess suplu,|, the Lipschitz constant

K, of ;(') in [Asl, 1} .;o(x) and € such that

T

1 € Cc(e), ¥ mh

[}
m,h z,n,r

Construct a cutoff function (x,t) * {(x,t) € C (Q), such that &(x,t) 3 1 on ',
C(x,t,) 20, x*{(x,t) e c;(c) and 0<€ ¢ < {, Then u- hcze C.(Q) and vanishes on
’
the parabolic boundary of Q. Multiplying (7.34) by ©  t? and integrating over @,
1

after standard calculations we obtain

2 < c(1e '2 + 1w 2

2
(7.26) ess sup lo_ L + IIV,‘wnlhlcl.‘,lQ ah 2‘01 -,n' 2",?) P

1
PPN m,h” 2,6x{t}
1 2

for a constant C, depending upon €, dist(Q,Q'), the data but independent of m and
<+ -»

h. 8ince A e J‘(QT) uniformly in m we have that “-,h e x.z(ﬂ,’) uniformly in m

and h. Therefore from (7.26) recalling the definition of the cutoff function §, we

deduce that there exists a constant C(€) depending upon € and the data but independent

of m and h such that

(7.27) t < c(e) .

“-,h'vz(Q)

Corollary (3.2), with p = 2 implies that Y h e L‘(Q") uniformly in m and h.
*

Therefore since the choices of Q, Q', Q are arbitrary, we deduce that w e x.:”mr),
uniformly in m, with bounds depending upon €.
From the representation (7.23) and the Calderon-Zygmund theory of singular integrals

[20], we deduce that

b loc
van er, m,r) uniformly in m ,




and therefore ;- e v].‘; ‘(QT) uniformly in m. By Oorollary 3.2, with p = 4 we find
1
* loc

v, €1g°(8,) uniformly in m. Now letting h+ 0 in D'(R) in (7.25) ve have ' §

]
(7.28) Ty uu - vAun = curl(.n) in v'm,r) .

! From (7.27) we see that w. is a solution of (7.28) which belongs to V;”(QT). Since

j ¢ e11°° ) uniformly in m, standard parabolic theory [11, 16, 17], implies that

1 m 8 T
| L e x&“(nT) uniformly in m, with local bounds depending upon €.

The lemma is now a consequence of the representation (7.23).

Finally we employ Lemma 7.4 to show that :—t u e L;oc(ﬂ,r).

e N O e AR T Y e -

Lesma 7.6: Let K be a compact of QT. Then there exists a constant C depending upon

Bl 2 e <l

dist(K,aﬂT), € and the data, but independent of m such that

]
15 unlnz(K) <c.

4 € xzc 2 be compacts and consider the cylindrical domains

Proof of Lemma 7.6: Let K

= = L] [ ]
Q= x1 x [t1,t2]l {22 H xz x “"1':2’ where

L i s

L] I‘ -
0<t1<t1<t2<tz T

Construct a cutoff function y¢(x,t) € c.(ta such that

(1) supp v C Qz

(1) ¢ 2 1, (x,t) €Q . _1

Next consider identity (7.21) and set

t(um) =z

~1
Yolzg) = B (K (2)) .

It is clear that by virtue of the assumptions on K(°) it will be sufficient to prove

3
.Tt lllz'K <C.




In {(7.21) with the indicated change of variable, choose the tesat function
) 2
[T{[:nlh) [

Since supp v C 92' the term involving integrations on Sy drops out, and we have

) 3 2 ) 2
é’{ {Tt- [Yn(zn)]h It lzm]hw M vx(zmlh ot vx(zn]hw +
2

(7.29)
) 2 et 3 2
$ 9,020, 37 l2,0,00 0% ¢ (v oV X7 (2 )], 37 (2], ¢ }axde = 0

Consider the first integrand in (7.29) and recall that by virtue of assumption [A3]

and the construction of the sequence B_(') we have

1

Yite) = 8217 (821" (81 > 27 s @ R\{0} .

Now from the definition of Steklov averaging it follows that

Y-(:-(t + h)) - Y‘(zn(c)) . an(t +h) - z-(t)

2 ?
3c Ualzadl, 3¢ (B0p = h n

2
2z (t +h) -z (¢)
=it m ] 1 -1,9 2
» a0 h 1= A g tzply

Por the term involving gradients we have

3 2 103 2,2
I] Volz,), 37 Y, lz,) 0 axat ~ cfz! 3T 9, (2 0, “eaxde =
2 2

2
1 2 ¥
= 3.Qf 1 izl | 3 axde .
2




These remarks in (7.29) give

-1 3 2.2 1 2 a? 3 v
I (z ), | ¥ axde = 3 [ 19 tz,), |° 55— axae - 2 IV te ), 5% (21,999
2, ?, 2,
(7.30)
+ -1 9 2
- éf [v.WxK (z.)]h(ﬁ lz.lh)w dxdt = I, + I, +1I,.
2

We estimate the Ii' i =1,2,3 separately. From (7.3) it follows that the

integral I, 1is uniformly bounded with respect to = and that the bound will depend on

g%, i.e. the distance between Q, and Qe

2 2

As for I, we use the Cauchy inequality ab < na” + % b® n > 0, to obtain

3 2 4 2
'Izl <n IQ! lﬁ [l.]hl wz 4 éf IVx[z-]h|2|Vx.p| dxdt
2 2

We do the same with 13

? 22 1 * -1 2 2
{350 < n éf lyg t2),| "0 axat + T y |ty 9, X (s 01, 157 .
2 2

Carrying these estimates in (7.30) we obtain
-1 ) 22 2 2
ny - éj I3t (5,),,] “¥axat < c(n) {2! 1V, k2,1, 1 “tele | + 19,01 “1axat +
2 2

1 * -1 22
sl ey a2 2.
%

>
Since we have previously shown that Ya is locally bounded independent of m the last
integral is uniformly bounded with regpect to m, Finally we choose N0 = 1;1/4 and recall

that v =1 on Q1. This yields
1z <c(v i
TS 2'91 c( Ve .’Qz,dht(q’ ’92)"vxun'2,0,r) .

Since this e;tluu is independent of h, from a result of [11]) it follows that the weak
z
m

derivative T exist and is a locally square summable function in RT. The lemma is

proved,




Remark: We stress the following two facts
du

)
(a) W—G L2 only locally, uniformly in m.
(b) The a-priori bound

du
™ >
hé—‘_'—lz’g1 < C(Ivll.’Qz,dist ("39-1-"”;‘%'2,01.)

does not depend upon m, since’ l; [} and 1V u B are bounded independently
n ",Q2 XxXm 2,01,
of m, but does depend upon € via l; I n*
n sz

7-{b) The liait as m + »

¥We now conclude the proof of Proposition 6.1 by letting m + ® in (7.1)~(7.2). From
(7.3) it follows that the sequences {u.}. {;-} are weakly compact in H;’O(QT), and
I, (Q,r) respectively; hence subsequences can be selected and relabeled with m, such

that

1,0
weakly in "2 (Q,r)
L > > 1 n
ot weakly in J!‘T)'

Lemma 7.11: let € > 0 be fixed., There exists a subsequence (relabeled with m) such

that

uw * u strongly in Lz(ﬂ,r) .

Proof of Lemma 7,11,

Let K be a compact of “'1" Then by Lemma (7.3) and (7.11) we have
3u-
Iu-I.'K + IT\?-.Z,K + va\l-lz'K < ¢c(K)
where C depends upon €, dilt(K,aﬂ,r) but not upon n.
Therefore for a subsequence

u, oy strongly in LZ(K). and

Now by the uniqueness of the weak limit u, we have

ug = ;e' a.e. (x,t) @ K.,

33~
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Let KP a sequence of compacts of QT such that Kp CcK and U K Then by a

- ﬂ .
p+1 p>1 P T
diagonalization process a subsequence can be selected and relabeled with =m such that
up T Y A, in ﬂ,r .
Since Iu-l g is equibounded, by the Lebesque dominated convergence theorem we have
,
T
u + u strongly in Lz(ﬂT) .
By the trace theorem and (7.3)

trace u. + trace u, strongly in Lz(s,r) ’

and by monotonicity of B8(+), 8.(u.) * w € B(u) weakly in Lz(n,r).
Lemsa 7.12: For a subsequence (relabeled with m)
+* >
v *v
| 3

e strongly in J(QT) .

Proof of lemma 7.12. A consequence of Lemma 7.11 is that ?(u_) * ?(ue) and

lle(u-) * Hc(“c) strongly in Lz(ﬂ,r). Therefore since the space dimension is N = 2 and
€ >0 is fixed, the strong convergence of ;n to ;: follows by a straightforward
adaptation of Serrin's stability theorem (Theorem 6 of [19] page 83).
We can now pass to the limit in (7.1), (7.2) as m + * (for m 1labeling the
particular subsequence chosen above) to obtain the existence of a pair (ue,;c) such that
(7.31) [ vr, <c

ul ’
€ v, (8) € [+]
27 J1(9T)

where the constant Co does not depend on €, and v, ;e satisfy

+»>
(7.32) Sflf {-Bu )y, + Y Ku )V v + v:'queW}dxdt - -£ glx,t,u Jvdo + £ B(u,)v(x,0}dx
T T

for all ¥ @ u;"(nT) such that ¢(x,T) = 0, and

/I {-Ce-it VT T e c-1He(ue);e°;}dxdt -
h)
T

= [f Fub axae + | 3°(x)$(x,o)dx
o, a

for all ¥ @ 3, 8, ¥x) = o,
*

~34-
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Statements (b)-(e) are obvious from the estimates we have established in Lemmas 7.3,

7.4, 7.10, 7.2.

8. PROOF OF PROPOSITION 6.2

Since the modulus of continuity has to be uniform in € we start by listing the

estimates that we have which are uniform with respect to €.

Pirst
(8.1) lul, g $Cp VED>O.
T
Next
(8.2) ™ 151 <c.
L] [ [ ]
ev,m Yelv @y < %

From the second of (8.2) and Corollary 3.1 we have

(8.3) . W, an < (Const independent of €) .

Also the qualitative information in (d) in Proposition 6.1 is essential in order to justify
some of the calculations below, but the modulus of continuity will not depend on the local
estimates for '%? “tlz,K'

The function ® (*) claimed by Proposition 6.2 for K C RT will only depend on the
quantities listed in (8.1)-(8.3).

In this section the restriction N = 2 will play a dramatic role. The flow of the
proof is like the arguments produced in (7, 8)]. Now the order of summability (8.3) of ;e
is not high enough to fulfill the assumptions of Theorem 1 of {7]. For this reason a
modification in the proof is needed where we will exploit both the dimension N = 2 and
the particular structure of the equation corresponding to identity (6.1).

Since the argumenta have been presented in detail in (7] we will limit ourselves to
pointing out the differences that occur at various steps in the proof.

The main idea will consist in showing that yiven (xo,to) e QT' we can construct a

» L]
sequence of cylinders 9, "centered" at (xo.to), such that Qi > Qﬁ+1 and shrinking to

~35«
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(xo,to), where the oscil)ation of u decreases, according to the operator associated
with (6.1) and in a way determined only by the quantities in (8.1)-(8.3). Given n > 0,

this process will also prescribe the size of a cylinder Q(n), where

ess osc ue <n, Ve >0,
Q(n)

This will obviously yield a modulus of continuity for u, over compacts K C DT, in an
uniform fashion with respect to €.
[8.A) Preliminary material.

Pirst we report a result of [11] which in our context can be stated as follows. Let

1,1
u, satisfy (6.1) and u, ] "2,loc(nT)' Then u. gatisfies the integral identity

t tz

2 L d
(8.4) é B(u )w(x,t)dx l +f £ {-s(uewt + Y K(u )V v+ v uee axat

1 t1

for all v @ H;"(QT) such that x * ¢(x,t) 1is supported in @ for all t € [t1,t2],
and all intervals [t1,t2] C (0,T). We will consider cylinders contained in ﬂT of the
following special form. Let lxo,to) be an arbitrary point in QT and denote with
B(R) the ball {|x - x°| <R} and with Q/(8) the cylinder

QR(e)

Also {f 01,02 @ (0,1) we set

Hi

2
B(R) x (t, - orR A

Q,(8,9,,0,) = B(R - 0.R) x [t - 8(1 = 0,)R%, ¢ )
Consider the definition (4.2) of the graph B8(°) and set
(8.5) B(u,) = u. + H(u)
where s *+ H(s) is the graph
[s] ° s >0
(8.6) H(s) = { [-L,0] , 8 =0
-L v s <0,
In (8.4) we employ a test function y¢(x,t) supported in the ball B(R) for all
t e [to - 9R2,to] where R and © are assumed to be so small that QR(B) C QT' By the

results of the previous section %? u, -] LZ(QR(O))' therefore substituting (8.5) in (8.4)

-36-
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and integrating by parts with the indicated choice of ¥ we obtain the identity

t t
(8.7) [ mtueix,v) | 5 - / 2 f Hlug )y dxdt +
B(R) to-QR to-GR B(R)

t
] >
+f | Azpuge + Tku )V + v eV u vlaxat = o
to-ekz B(R) t € x € X €E x €

for all ¢ € ﬁ;"(QR(e)), and all t € [to - 9R2,t°]. The purpose of (8.7) is to isolate

the contribution coming from the jump in 8(°) with respect to the rest of the equation.

Next we construct particular test functions in (8.7).

Let (x,t) * L(x,t) be a cutoff function in QR(B) satisfying

. -1
(1) () @ C(B(R)), [V &] € (0.R)

or%) = 0, x @ B(R), O < g, < (eozaz)",

(ii) C(x,to
(iii) T(x,t) 2 1, (x,t) € QR(9,°1.52)-

Let k € R and consider the functions
(u. - x)* = max{u_ - x;0}
3 €

(o, - x) = max{-(u, - k);0} .

It is obvious that if u e Lr,s(QR(e))' then (uc - k)t € Lr,s(QR(e))’ r,s > 1. It is
known that if ue € H;'1(QR(9)) then also (“c - k)t e H;"(QR(B)). (cf. [11]).
In (8.7) we will choose
pix,t) = 2l - 00 .
For simplicity of notation we will drop the subscript € and set
t

o) =) o - ot )"
B(R) CO—BR

t
-1, s - k)tCz(x.f)ltdxdT .
to-ea B(R)

-37-
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The remaining terms in (8.7) are transformed as follows '
b
t t
o ¢ g—t wlu g2, axat = 3/ -g; u-x) 112c%(x, D)dxat =
t _-6R“ B(R) t ~0R“ B(R)
0 0
1 £.2,2 1t 4.2 3
=3 % eax -3 [ 2 [R50, 1) 57 ¢ dxar 2
B(R) to-en B(R) ‘
E
> L)X (0) - Lt 1212 .
2 2,B(R) t' 12,0.(0)
Por the term involving wa we have
.2 t £,2,2
2[ 19 K(u)V,_(u-k)g dxat =f ) [ x| (u-k) ¥ 57 +
t_-6R” B(R) x t -BR* B(R)
0 ()
t + N ¢ £,2,2
+ 2I 2K (W)V_(u-k)¥g (u-k)*V & > xof o | 19, -0 % axar -
t,-8R" B(R) t,~8R” B(R) : ]
I
2 7
t a
-¢f J va(“'k)tlzczdxd‘r - _51 /I [(u-k)tlzlvxClzdxdT =
| to-en B(R) QR(G)
2
t A\
2,2 1 + 2
=, -¢)/ [ 1.tk ¥ % Paxar - —— 1)V g0 . ,
0 t,-0R% B(R) ¥ € x"12,04(8) ¢
We treat the term involving the velocity as follows Fﬁ
{
;
k

-38-
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t
I 1 9 atwsotic? g naxar -
t,-0R° B(R) ¥

t
2! Tr-(vxuu-x)*lz)cz(x,naxar -

- lj
2
to-ea B(R)

2 2] Vet ew ¢ axar .
-6r?  B(R) |

Coabining these estimates as parts of (8.7) we obtain

t
1 -t - )% %axar <
5 Hu=k)720) ooy (e + (A =€) { o £(a)lv"(u k) * [ ‘g axar
0

ol

1 £ 2
€ —— H{u-k) |vx:||

2 1 Y - b&
Z,QR(O) *3 1 (u=-k) “t) IZ.QR(B) +

e

t
of L
to-ea B(

(V117 &l | tu-k)®) 2axat + o%(x, ¢ )
o °

~

2
for all t e [t.o - B8R ,tol.

1

Now choogse € = 3 )\o, recall the construction of the cutoff function {(x,t) and use

the arbitrarity of t & [to - Onz,tol, to conclude that there exists a constant Y

patnguts ~ g

depending only upon the data such that

a2 ~2 2,91 uay B 2
Tu-)78 7, o € YU(o,R) = + (0,8RT) ")eM(u<k) '2,QR(9) + i

v2' (QR(0,¢1,02))
(8.8)

+ Y(o,)"! If (;H(u-k)tlzdxdt + sup Yot(k,to)
(9) te[to-ea ,r.ol

«3Q-




Inequalities (8.8) are valid for every cylinder QR(G) C nT, every pair 01,02 8 (0,1)

and every real number k. They are one of the main tools in the proof of continuity.
Another tool is the following logarithmic estimate,
{8.B] A logarithmic estimate.

+
Lemma 8.1: Let k € R*, u > ess sup (u - k) and 0 < n < u, Set

QR(O)

vix,t) = tn* [- u — | « max{tn L —— 0} .
lu - {u -k} + nJ u=-{u=Xx) +n

Then there exists a constant C = C(8) such that for all t € [to - Okz,to]

[ Vawacs [ ok - 08%) + S (10 L) neas )
B(R-("R) B(R) 01

Remark: For simplicity of notation we will use the same symbol ¥ for ¥(x,t) and
;(u(x,t)). In what follows V' will mean %; ;.
In the cylinder QR(O) congstruct a cutoff function x + L(x) such that
-1
(1) Tx)  cy(BR)), |V.8] < (a,R)
{1i) T(x) =1, x € B(R - °1R)'

Proof of Lemma 8,1. In (8.7) consider the following test function

pix,t) = (¥2) g%
where x * {(x) 1s as above.
It is apparent that v @ W)’ (Q (8)) and that (¥%)* = 21 + vi(w")2
Since (Vz)' vanishes at those points (x,t) @ QR(O) where (u-k)' <n and
n > 0, the terms in (8.7) involving u(“c) do not give any contribution. The term
involving %% gives
t

/ g—;uwz)'zz(x)dxdt = Vux,ne2(x)ax

! -882 B(R) B(R) ¢ 6%
% 0

We estimate the remaining terms as follows




STV

o] KV utiae s 99149 ue? + (4319 ¢*1axae >
t.o-en B(R)

t
2 2.2
O A S T LA M LA R

t,-0R” B(R)
where
¢ 2 2,2
Jeaf L KUY ¥V 0LV axdr < 2 / [ asnw?|ve%t s

t ~-0R° B(R) ¥ t _-8R* B(R)

0 ()

2

1t 2

+ TI 2 J HV‘CI axdT .
to-ek B(R)

For the term involving the velocities ;‘ vwe have

t
RS wewtlaar e 2 [ L Vo9 veweaxar < l
t,~0R® B(R) x t,-0R" B(R)

<[ L] t« »(#1)2(9 ul*c%axar + 2 v1v| %c%axar .
:o-en B(R) to-en B(R)

Collecting these estimates we have

t
2 2 2,2
N R G 4e) { -or3 'L(n)“ + W07V u| " axar <
(!
2

8y, ¢

2 2 1 2

(8.9) < 1zl (¢, - 6R°) + — [ w9 ¢{“axar +
2,B(R)" 0 CY: to-9R2 B(R) x

t
+%I 2/ vivi%caxar .
eo-en B(R)




A ]
Now choose € = ‘_o and observe that ¥ € &n %. Recalling the construction of { we

conclude that there exists a congtant c depending only upon tha data sueh thet

[ Vixewviax < | vix.t, - R%)ax +

B(R=0,R) B(R) 0
(8.10)
~ - 1
+ T an & {(0,R)"%6R? meas B(R) + 1V, 03 _ [0R? meas B(R)2} .
n 1 € C,Qf
> 2 ‘/3
Since Iv is uniformly bounded with respect to ¢ and (R meas B(R)}'¢ <

e'4,ﬂT
€ (const) meas B(R), for N = 2, it follows from (8.10) that.

(8.11) ] Vixvax < [ vix,t

- o + &5 (tn ¥) mean B(R) .
B(R=0,R) B(R) o

1

0

The lemma is proved.
Let us return now to the inequalities (8.8) and estimate the term invelviag welocities
as follows,
Set
E 3 = t
A p{T) 2 {x @ B(R)|(ulx,T) ~ k)" > o}
r
and
M(k,R) = ess sup (u - k)* .

QR(Q)

Then

vio, 007" [f V1t - 0¥ %anar <

0,(0)

< v ) mogrN? I [Vixtte - 0F > olaxar

2 (®)

where X[(u ~ k)t > 0] 1is the characteristic functien of the set [(u - k)t >»0] N Qn(o)'

We have

%o

I/ Pixtiu - ©% > ojaxar < 19 o1 meas ¥ _(1){ 34
2 @) 48, g A.r

-g2-
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Therefore, by changing the constant Y appropriately, (8.8) can be rewritten as

fu - x)*nz‘ 0 <vie Ry (azenz)"l-uu - k)tl: 08y *
vz' IQR(°.°1.02)1 **R

{(8.12)
% 3/4

F+ 4
2 meas Ak'R(t)dt + sup Yé (k,to) .

+ (@ r~ moe,rn? | f
telto-ﬁn ,co]

co-GR

Let us now show how to conclude the proof of Propasition 6.2.

In [7.8) we demonstrated that the existence of a modulus of continuity for weak

solutions of singular quasilinear parabolic equations in divergence form was solely a
consequence of inequalities (2.7) page 16 of [7) and lemma 2.2 page 19 of [7]. Now the

analog of Lemma 2.2 of (7] is precisely lLemma 8.1 here., Actually the structure of our

equation leads to a less complicated logarithmic estimate. We stress the fact that the
derivation of Lemma 8.1 employs in an esgential way the fact that the dimension N 4is 2.

As for inequalities (2.7) of {7], their analog here are inequalities (8.12). There is

only a slight difference in the term involving A: R(t).
’

In (7] such term reads
e
%o . 3 2 (14x)
1= f [meas A” _(T1)]7ar
2 k,R
t -8R
0
where q,r > 0 are linked by

1 N N
rt|@™a

and K @ (0,1).

Therefore 1 can be estimated by

S o ) KD, gt

(8,13) I € Const RN-R“‘

In our cage the analogous term

gl ko . 3/4 2
I' = 101 R f o Meas Ak (t)ar {M(k,R)]
R
to-OR
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is eatimated as

(8.14) 1 < const (MUGRNIZARY, (v« 2) .

Note that in this estimate tao N = 2 is essential.

Finally let us show the difference between (8.13) and (8.14) does not affect the proof

in (7).
Let
u+ = @88 sup u; u_ = ess inf u
QR(O) QR(O)
so that the oscillation @ of u in QR(O) is
’. -
W=y -p

Inequalities (8.12) are employed with the choice of k given by

ke -

N

or

K=y 4=
2!

where s € N. Consequently, from the definition of (u - k)*.

M(k,R) € &,
28

the oscillation can be bounded with a power of R, and there is

Now if 9;-< R¥</2,

2
nothing to prove. The case to examine is then when

Q; 5 Rm</2
2
NK W 12
In {7} we estimated R from above with (-—s) and carried out the arguments with such
2
an estimate. Now this is precisely the content of (8.14) via (8.15). The term

(H(k,R)lz in (8.14) therefore plays the role of RN‘ in (7) when division by (2:)2 is
2

carried out.
We omit the details (which are given in [7]) noticing that our situation is in fact

easier due to the simpler structure of the equation. The proof is complete,

Y-V 2
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Remark: The agsumptions u, € L, (Q(0)) and “§ + g(x,t,§) monotone at the origin", were

used in the proof of lemma 7.3. Now it is apparent from the previous arguments that one

only needs

loc
L er (ﬂ,r) independent of m and ¢ .,

The latter can be proved starting from inequalities (8.8) with the aid of Theorem 6.2 of

[11] page 105. Consequently one needs only to assume g e z.zm(o)) and the monotonicity

condition on g(x.t,*) at zeyro can be relaxed.
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